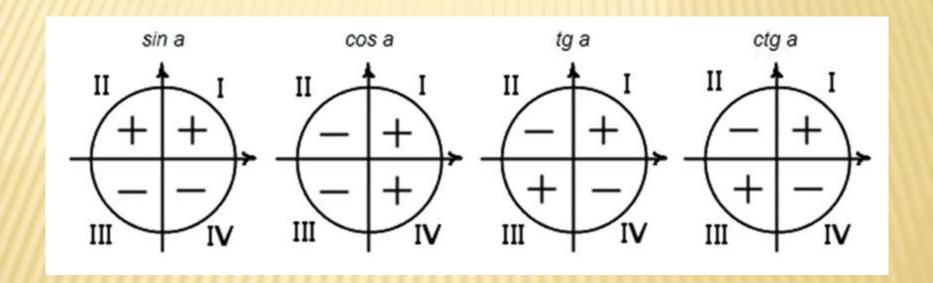
практикум, с элементами исследования.

ФОРМУЛЫ ПРИВЕДЕНИЯ

ОТВЕТЬТЕ НА ВОПРОСЫ

- * Какие знаки имеют абсциссы и ординаты всех точек, лежащих в первой четверти, второй, третьей, четвертой?
- Какое местоположение точки считается начальным?
- Какой угол считаем положительным, а какой отрицательным?
- С какой координатой точки совпадает sinα, с какой cosα?
- × Какие функции четные, а какие нечетные?

ЗНАКИ ФУНКЦИЙ ПО ЧЕТВЕРТЯМ



ОТВЕТЬТЕ НА ВОПРОСЫ

- * Что произошло, поменялось ли наименование функции?
- Какой знак стоит перед функцией в правой полученной части?
- * Попробуйте найти закономерность между получившимся знаком перед функцией и номером четверти.

ФОРМУЛЫ

$$\sin(90^{\circ} - \alpha) = \cos \alpha \qquad \cos(90^{\circ} - \alpha) = \sin \alpha$$

$$\sin(90^{\circ} + \alpha) = \cos \alpha \qquad \cos(90^{\circ} + \alpha) = -\sin \alpha$$

$$\sin(180^{\circ} - \alpha) = \sin \alpha \qquad \cos(180^{\circ} - \alpha) = -\cos \alpha$$

$$\sin(180^{\circ} + \alpha) = -\sin \alpha \qquad \cos(180^{\circ} + \alpha) = -\cos \alpha$$

$$\sin(270^{\circ} - \alpha) = -\cos \alpha \qquad \cos(270^{\circ} - \alpha) = -\sin \alpha$$

$$\sin(270^{\circ} + \alpha) = -\cos \alpha \qquad \cos(270^{\circ} + \alpha) = \sin \alpha$$

$$\sin(360^{\circ} - \alpha) = -\sin \alpha \qquad \cos(360^{\circ} - \alpha) = \cos \alpha$$

$$\sin(360^{\circ} + \alpha) = \sin \alpha \qquad \cos(360^{\circ} + \alpha) = \cos \alpha$$

ФОРМУЛЫ

$$tg(90^{\circ} - \alpha) = ctg \alpha \qquad ctg(90^{\circ} - \alpha) = tg \alpha$$

$$tg(90^{\circ} + \alpha) = -ctg \alpha \qquad ctg(90^{\circ} + \alpha) = -tg \alpha$$

$$tg(180^{\circ} - \alpha) = -tg \alpha \qquad ctg(180^{\circ} - \alpha) = -ctg \alpha$$

$$tg(180^{\circ} + \alpha) = tg \alpha \qquad ctg(180^{\circ} + \alpha) = ctg \alpha$$

$$tg(270^{\circ} - \alpha) = ctg \alpha \qquad ctg(270^{\circ} - \alpha) = tg \alpha$$

$$tg(270^{\circ} + \alpha) = -ctg \alpha \qquad ctg(270^{\circ} + \alpha) = -tg \alpha$$

$$tg(360^{\circ} - \alpha) = -tg \alpha \qquad ctg(360^{\circ} - \alpha) = -ctg \alpha$$

$$tg(360^{\circ} + \alpha) = tg \alpha \qquad ctg(360^{\circ} + \alpha) = ctg \alpha$$

ПРОДОЛЖИТЬ ПРЕДЛОЖЕНИЕ:

- * Наименование тригонометрической функции следует сохранить, если под знаком преобразуемой функции содержится сумма аргументов вида ...
- Наименование тригонометрической функции следует изменить, если под знаком преобразуемой функции содержится сумма аргументов вида ...
- Перед полученной функцией от аргумента α надо поставить тот знак, ...

ПЕРВИЧНАЯ ПРОВЕРКА ЗНАНИЙ

- и Івариант
- $(1)\cos\left(\frac{3\pi}{2}-t\right)=$
- \times 2)sin($\pi + t$) =
- \times 3)cos(90° + t) =
- \star 4)sin(360° t) =
- \star 5)tg(180° t) =
- \star 6)ctg $(2\pi + t) =$
- $(\frac{\pi}{2} t) =$
- \times 8)cos(270° + t) =

II вариант

$$1)\sin(270^{\circ} - t) =$$

$$2)\cos(\pi - t) =$$

$$3)\cos(2\pi + t) =$$

$$4)\sin\left(\frac{\pi}{2}-t\right) =$$

$$5)$$
ctg $(180^{\circ} + t) =$

$$6)\operatorname{tg}\left(\frac{3\pi}{2}-t\right) =$$

$$7)\cos(90^{\circ} - t) =$$

$$8)\sin(360^{\circ} + t) =$$

ОТВЕТЫ

I вариант

- 1) sint
- 2) sint
- 3) sint
- 4) sint
- 5) -tgt
- 6) Ctgt
- 7) Cost
- 8) sint

Пвариант

- 1) cost
- 2) cost
- 3) Cost
- 4) cost
- 5) ctgt
- 6) ctgt
- 7) sint
- 8) sint

ПРИМЕНЕНИЕ ФОРМУЛ

- * Нахождение значений тригонометрических функций различных углов с помощью приведения к углу 1-ой четверти.
- **Упрощение тригонометрических выражений.**
- Решение тригонометрических уравнений.

ДОМАШНЕЕ ЗАДАНИЕ

- п.26 стр.209, № 26.4,26.11, 26.21(б),
- **х** посмотреть видео-урок с геометрической интерпретацией формул приведения.
- \star Дополнительное задание на оценку, сдать завтра утром (C_1 тестов ЕГЭ).
 - + a)2 cos²x= $\sqrt{3}$ sin($\frac{3\pi}{2}$ +x);
- * б) найти все корни этого уравнения, принадлежащие промежутку $\left[\frac{3\pi}{2};3\pi\right]$.
 - + a) $\sqrt{2} \cos^2 x = \sin(\frac{\pi}{2} + x);$
- * б) найти все корни этого уравнения, принадлежащие промежутку $\left[-\frac{7\pi}{2};-2\pi\right]$.
 - + a) $\sqrt{2} \cos^2 x = \sin(x \frac{\pi}{2});$
- * б) найти все корни этого уравнения, принадлежащие промежутку $\left[-\frac{3\pi}{2}; -\pi\right]$

ИТОГИ УРОКА

- Всем спасибо за сотрудничество!
- До свидания!

